Available online at www.sciencedirect.com

sclsncs(dmnsc-ro JOURNAL OF

b : Approximation
£ 00 Theory
ELSEVIE Journal of Approximation Theory 126 (2004) 141-156

http://www.elsevier.com/locate/j at

The approximation property for spaces of
holomorphic functions on infinite-dimensional
spaces I

Sean Dineen® and Jorge Mujica®™*

4 Department of Mathematics, UCD, Belfield, Dublin 4, Ireland
bIMECC—UNICAMP, Caixa Postal 6065, 13083-970 Campinas, SP, Brazil

Received 30 July 2002; accepted in revised form 16 January 2004

Communicated by Aldric L. Brown

Dedicated to the memory of Klaus Floret (1941-2002)

Abstract

For an open subset U of a locally convex space E, let (H(U), 19) denote the vector space of
all holomorphic functions on U, with the compact-open topology. If E is a separable Fréchet
space with the bounded approximation property, or if E is a (DFC)-space with the
approximation property, we show that (H(U), 1) has the approximation property for every
open subset U of E. These theorems extend classical results of Aron and Schottenloher. As
applications of these approximation theorems we characterize the spectra of certain
topological algebras of holomorphic mappings with values in a Banach algebra.
© 2003 Elsevier Inc. All rights reserved.
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0. Introduction

Let H(U) denote the vector space of all complex-valued holomorphic functions on
a nonvoid open subset U of a complex locally convex space E. Let 7y denote the
compact-open topology, and let 7., denote the Nachbin compact-ported topology on
H(U). In 1976 Aron and Schottenloher [2] gave necessary and sufficient conditions
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for H(U) to have the approximation property when endowed with the topologies 7
or 7. It follows from their results that if E is a Fréchet space or a (DFC)-space, and
if U is a finitely Runge open subset of E, then (H(U),1() has the approximation
property if and only if E has the approximation property.

Every balanced open set, and every polynomially convex open set are finitely
Runge. But what can be said when U is an arbitrary open set? Very little could be
said in 1976, for that problem is closely connected with the Levi problem, envelopes
of holomorphy and holomorphic approximation, which were not sufficiently
understood at that time. But now we can say much more. In this paper we show
that if E is a separable Fréchet space with the bounded approximation property,
then (H(U), 1) has the approximation property for every open subset U of E. We
also show that if U is an open subset of a (DFC)-space E, then (H(U), 1) has the
approximation property if and only if E has the approximation property. As
applications of our results we characterize the spectra of certain topological algebras
of holomorphic mappings with values in Banach algebras or, more generally, with
values in complete locally m-convex algebras. For additional applications we refer
the reader to a recent article of Dineen [8].

This paper is devoted to the study of (H(U),1). A subsequent paper will be
devoted to the study of (H(U), 7).

Even if we are mainly interested in the study of open subsets of locally convex
spaces, we deal here more generally with Riemann domains over locally convex
spaces. The reason is that our proofs rely heavily on the machinery developed by
Mujica [19] and Lourencgo [16] for pseudoconvex Riemann domains over Fréchet
spaces and (DFC)-spaces, respectively, and the fact, established by Alexander [1] and
Schottenloher [25], that the envelope of holomorphy of an open subset of a locally
convex space is a pseudoconvex Riemann domain over the same space.

1. The &-product and the approximation property

The letters E, F denote locally convex spaces, always assumed complex and
Hausdorff. L(E; F) denotes the vector space of all continuous linear mappings from
E into F. L.(E; F) denotes the vector space L(E; F), endowed with the topology of
uniform convergence on all convex, balanced, compact subsets of £. When F = C,
we write E’ instead of L(E;C), and E/ instead of L.(E;C).

A main tool in this paper is the e-product of Laurent Schwartz. Following
Schwartz [27, Exposé no 8] (see also Schwartz [28, no. 1], Bierstedt [3, Definition 3.1]
or Kothe [14, p. 242]) we let

E¢F = L,(E; F)

denote the vector space L(E.;F), endowed with the topology of uniform
convergence on the equicontinuous subsets of E’. The space Ec¢F is called the e-
product of E and F. Bierstedt’s definition of the e-product differs slightly from
Schwartz’ or Kothe’s definition, but both definitions coincide in the case of quasi-
complete locally convex spaces.
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When U and V' vary among the closed, convex, balanced 0-neighborhoods in E
and F, respectively, then the sets

W(U°; V) ={TeL(E;F): T(U°)<V}

form a 0-neighborhood base in EcF.

Theorem 1.1 (Schwartz [27]). If E and F are locally convex spaces, then the mapping
T—T' is a topological isomorphism between the spaces EcF and FeE.

One can check that the mapping 7— 7’ maps the set W(U°; V) onto the set
w(ve; U).

Following Schwartz [27, Exposé no. 14] (see also Grothendieck [10, Chapitre I, no.
5]) we say that E has the approximation property if the identity mapping on E lies in
the closure of E'® E in L.(E; E). Schwartz’ definition of the approximation property
(called the weak approximation property by Kothe [14, p. 232]) differs slightly from
Grothendieck’s definition, but both definitions coincide in the case of quasi-complete
locally convex spaces. The following theorem summarizes results of Grothendieck
[10, Chapitre I, no. 5] and Schwartz [27, Exposé no. 14] (see also Bierstedt [3, Satz
3.9] or Kothe [14, p. 243)).

Theorem 1.2 (Grothendieck [10], Schwartz [27]). For a locally convex space E the
following properties are equivalent:

(1) E has the approximation property.

(2) L.(E;E)=EQE.

(3) L.(E;F) =E' ®F for every locally convex space F (equivalently for every
Banach space F).

(4) L.(F;E) = F'®E for every locally convex space F.

(5) FeE = FQE for every locally convex space F (equivalently for every Banach
space F).

(6) EecF = EQF for every locally convex space F (equivalently for every Banach
space F).

The equivalence of (1)-(4) (for every locally convex space F) is easily seen.
Implication (4) = (5) is immediate. Implication (5) = (4) follows from the fact that
L.(F;E) is a topological subspace of F.¢E. And equivalence (5) <> (6) follows from
Theorem 1.1. The fact that each of conditions (3), (5) or (6) for every locally convex
space F is equivalent to the corresponding condition for every Banach space F, was
pointed out by Bierstedt and Meise [4, p. 100]. In the case of condition (3) or (6), the
equivalence follows from the arguments of the proofs of two results from the book of
Kothe [14, p. 233, (2), (3)]. In the case of condition (5), the equivalence follows from
Theorem 1.1 and the corresponding equivalence in condition (6). We do not know
whether a similar remark applies to condition (4).
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Corollary 1.3. A4 locally convex space E has the approximation property if E. has the
approximation property.

Proof. If E/ has the approximation property, then it follows from Theorem 1.2(6)
that

E'®F = El¢F

for every locally convex space F. Since L.(E; F) is a topological subspace of E/¢F, it
follows that

E'QF = L.(E;F)

for every locally convex space F. Thus E has the approximation property, by
Theorem 1.2(3).

2. The e-product and spaces of holomorphic mappings

If U is a nonvoid open subset of a locally convex space E, then a mapping
f: U—F is said to be holomorphic if it is continuous, and the function A —of (a +
Ab) is holomorphic on some open neighborhood of zero in C for each ae U, be E and
VeF'. H(U;F) denotes the vector space of all holomorphic mappings from U into
F. When F = C, we write H(U) instead of H(U;C).

Let (X, &) be a Riemann domain over E, that is X is a Hausdorff topological space
and ¢ : X - E is a local homeomorphism. Let #"(E) denote the collection of all open,
convex, balanced neighborhoods of zero in E. A section of X is a continuous
mapping ¢ : A— X, where A< E, such that oo = identity on A. For Sc X and
Ve (E), we write S+ V< X if for each xe S there is a section g, : &(x) + V> X
such that ¢,o&(x) = x. Then we define x + ¢ = 6(&(x) + 1) for every xe S and te V.

A mapping f : X — F is said to be holomorphic if for each xe X there is a section
:E(x)+V-X, with Ve (E) and ¢o&(x) = x, such that the mapping foo is
holomorphic on &(x) + V. H(X;F) denotes the vector space of all holomorphic
mappings from X into F. When F =C, we write H(X) instead of H(X;C).
Let 7y denote the compact-open topology on H(X;F). We refer to the books
of Dineen [7] or Mujica [20] for background information on infinite dimensional
complex analysis.

We recall that a Hausdorff topological space X is said to be a k-space if a set
Uc X is open in X whenever UK is open in K for each compact set K < X. Every
metric space is a k-space. An open subset of a k-space is also a k-space. Hence it
follows that if X is a Riemann domain over a locally convex space E, and E is a k-
space, then X is also a k-space.

The following results are due to Schottenloher [23].

Lemma 2.1 (Schottenloher [23]). Let (X,&) be a Riemann domain over a locally
convex space E, and let F be a quasi-complete locally convex space.
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(a) For each f e H(X; F) let Sy denote the continuous linear mapping
VeF >yof € (H(X), ).
Then the mapping
fe(H(X;F),1)—>SreFe(H(X),10)
is linear, continuous and injective.

(b) Let ey : xe X —»e,e(H(X), 1) denote the evaluation mapping, that is e.(f ) =
f(x) for every fe H(X). If E is a k-space, then

exe H(X; (H(X),t).).

Theorem 2.2 (Schottenloher [23]). Let (X,&) be a Riemann domain over a locally
convex space E, and let F be a quasi-complete locally convex space. If E is a k-space,
then the mapping

fe(H(X; F),rg)aS}e(H(X), 70)eF
is a topological isomorphism. Its inverse is the mapping
Te(H(X),19)eF > Toexye(H(X; F),10).

From Theorems 1.2 and 2.2 we obtain the following corollary.

Corollary 2.3 (Schottenloher [23]). Let (X,&) be a Riemann domain over E, and
assume that E is a k-space. Then the space (H(X), o) has the approximation property

if and only if
(H(X;F),t) = HX)®F

for every Banach space F, or equivalently for every quasi-complete locally convex
space F.

Remark 2.4. A counterexample of Schottenloher [23, Example 1.4] shows that the
conclusions of Lemma 2.1 and Theorem 2.2 may fail to be true without the k-space
hypothesis.

3. Riemann domains over Fréchet spaces

Let (X, ¢) be a Riemann domain over a locally convex space E. If (Y, 7) is another
Riemann domain over E, then a morphism from (X, ¢) into (Y,#) is a continuous
mapping 7: X — Y such that not =¢&. If (Y,n) is a Riemann domain over F,
and TeL(E;F), then a T-morphism is a continuous mapping 7: X — Y such
that not = To¢.
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Let ¢s(E) denote the family of all continuous seminorms on E. For aecs(E),
a,beFE and r>0, set

Bi(a,r) ={xeFE :a(x —a)<r},
Ag(a,b,r) ={a+ ib: 1leC,|A|<r}.

Consider the distance functions d§ : X —[0, co] and dy : X x E— (0, 00 ), which are
defined as follows:

dy(x) =sup{r>0: there is a section ¢ : B({(x),7) > X

with 00¢(x) = x}u {0},

dx(x,b) =sup{r>0: there is a section o : Ax(&(x),b,r)> X
with go&(x) = x}.

If 0<r<d%(x), then B%(x,r) denotes the connected component of &' (B%(&(x),r))
which contains x. Likewise, if 0<r<dy(x,b), then Ay(x,b,r) denotes the connected
component of &' (Ag(¢(x),b,r)) which contains x.

If U is an open subset of E, then a function f': U—[—o0, o0) is said to be
plurisubharmonic if it is upper semicontinuous and the function A—f(a+ Ab) is
subharmonic on some open neighborhood of zero in C for each ae U and beE.
Ps(U) denotes the set of all plurisubharmonic functions on U.

If (X, &) is a Riemann domain over E, then a function /' : X —»[— 00, c0) is said to
be plurisubharmonic if for each xe X there is a section o : &(x) + V' — X, where
Vey (E) and go&(x) = x, such that foo is plurisubharmonic on &(x) + V. Ps(X)
denotes the set of all plurisubharmonic functions on X. The domain X is said to be
pseudoconvex if the function —log dy is plurisubharmonic on X x E.

If E has a Schauder basis (e,), then E, denotes the subspace generated by
ey, ...,en, and T, : E— E, denotes the canonical projection. If (X, ¢) is a Riemann
domain over E, then we set X, = ¢! (E,) and &, = ¢|E,. Then (X, ,) is a Riemann
domain over E,,.

The proof of Theorem 3.3 relies heavily on the next two lemmas, which summarize
results of Dineen [6, Example 2.4] and Mujica [19, Lemmas 2.5-2.7 and 3.1]. We
remark that the results in [19] sharpen results of Schottenloher [24], and are
ultimately based on the approach to the Levi problem initiated by Gruman and
Kiselman [11], and which became the model for all articles in that direction.

Lemma 3.1 (Mujica [19]). Let E be a metrizable locally convex space with an
equicontinuous Schauder basis and a continuous norm. Let (X,&) be a connected
pseudoconvex Riemann domain over E. Then there are three increasing sequences (A, ),
(By) and (C,) of open subsets of X, and a sequence (t,) of mappings with the following
properties:

(a) C,= B, A, for every n,and | J,-, C, = X.

(b) 1, : A, — X, is a T,-morphism, X, < A, and t, = identity on X, for every n.

(c) BinX,c cA4;nX, for every j and n.
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(d) 7.(C;) = Bin X, whenever nzj.

(e) For each K< <X and VeV (E) such that K + V < X, there exists noe N such
that K = C, and t,(x)ex + V whenever xe K and n>ny.

(f) For each f € H(X,) there exists a sequence (gr) = H(X) which converges to fot,
uniformly on C,.

Lemma 3.2 (Dincen [6], Mujica [19]). Let E be a locally convex space with an
equicontinuous Schauder basis. Let (X,&) be a connected, pseudoconvex Riemann
domain over E, and let xoe X. Then there exists a directed, fundamental family of
continuous seminorms o, on E with the following properties:

(@) d%(x9)>0 and o(x) = sup,, o(T,x) for every xeE.

(b) There exists a complemented subspace E, of E which has an equicontinuous
Schauder basis and a continuous norm. More precisely E = E, ®a~1(0).

(c) If we set X, = 7! (E,) and &, = E|X,, then (X, &,) is a connected, pseudoconvex
Riemann domain over E,.

(d) If n, : E— E, denotes the canonical projection, then there exists a m,-morphism
6, : X > X, such that ¢, = identity on X,.

(e) If a function fe H(X) is bounded on an a-neighborhood of xy, then foa, =f
on X.

Now we can prove our main result for Riemann domains over Fréchet spaces.

Theorem 3.3. Let E be a metrizable locally convex space with an equicontinuous
Schauder basis, and let (X, &) be a connected, pseudoconvex Riemann domain over E.
Then:

(a) H(X)®F is sequentially dense in (H(X;F),1o) for every Banach space F.

(b) HX)®F is dense in (H(X;F),ty) for every quasi-complete locally convex
space F.

(c) (H(X),10) has the approximation property.

Proof. (a) (i) First assume that E has a continuous norm, so that Lemma 3.1 applies.
Given fe H(X; F), we see that for,e H(A,; F) for every n. We claim that (f°t,)
converges to f uniformly on the compact subsets of X. Indeed given K< < X and
&>0, there exists V' e?"(E) such that K+ V<X and || f(y) —f(x)|| <e whenever
xeK and yex+ V. By Lemma 3.1(e) there exists nyp>1/¢ such that K<=C, and
7,(x)€x + V whenever xe K and n>ny. Hence

[ fotn(x) = f(x)]| <& (1)
whenever xe K and n>ny. Consider the restriction f|X, € H(X,; F). Since E, is finite

dimensional, a result of Grothendieck [9, Chapitre II, p. 81] guarantees that
(H(X,),70) is a nuclear Fréchet space and

(H(Xy; F), 7o) = H(X,) ®F.
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Hence there exists i, € H(X,) ® F such that
An(y) = fW)II<1/n (2)
for every ye B, n X,,. Write

Pn
hn(y) = Z hni(y)bnia
i=1

with h,;e H(X,) and b,;eF fori=1,...,p,. By Lemma 3.1(f) for each i = 1, ..., p,
there exists g,;€ H(X) such that

|Gni(X) = hniota(X)| < 1/npa||bail|
for every xe C,. If we define g,e H(X)® F by
Pn
gn(x) = Z gni(x)bnh
i=1
then
||gn(x) _hnotﬂ<x)‘|<l/n (3)

for every xe C,. If n>=ny, then 1,(K)<1,(C,) =B, X,. Hence for every xe K we
have that

1S G) = ga (< L () = Sota() + ]S oTu(x) = hnota(x)]
+ [heta(x) = ga(¥)]] <3e.

Thus (g,) converges to f in (H(X; F),1o).

(ii) If E fails to have a continuous norm, then, given f'e H(X;/f ), we fix xo€ X, and
choose aecs(E) such that a(x) = sup,a(T,x) for every xeE, d%(x9)>0, and f is
bounded on some a-neighborhood of xy. It follows from Lemma 3.2(e) that foo, = f
on X. Since E, has an equicontinuous Schauder basis and a continuous norm, there
exists a sequence (/,) = H(X,) ® F which converges to f in (H(X,; F), o). Hence the
sequence (/1,01,) lies in H(X)® F, and converges to foa, = f in (H(X; F),10). This
proves (a).

Conditions (b) and (c¢) follow from (a) by Corollary 2.3.

Remark 3.4. We used Corollary 2.3 to derive (b) from (a). It is not difficult to prove
directly that if H(X)®F is dense in (H(X;F), 1) for every Banach space F, then
H(X)®F is dense in (H(X;F),19) for every complete locally convex space F.
Indeed in this case F can be represented as a reduced projective limit of Banach
spaces, and the proof is straightforward.

Corollary 3.5. Let E be a separable Frechet space with the bounded approximation
property, and let (X, &) be a connected, pseudoconvex Riemann domain over E. Then:

(a) H(X)®F is sequentially dense in (H(X;F),19) for every Banach space F.

(b) HX)®F is dense in (H(X;F),19) for every quasi-complete locally convex
space F.

(c) (H(X),10) has the approximation property.



S. Dineen, J. Mujica | Journal of Approximation Theory 126 (2004) 141-156 149

Proof. (a) By a result of Pelczynski (see the announcement in [22] or the detailed
proof in [17]), there exist a Fréchet space M with a Schauder basis, and a Fréchet
space N such that M = E x N. Thus (X x N, (,idy)) is a Riemann domain over
ExN=M. Let 0:xeX—>(x,00eX x N, and let n:(x,/)eX x NoxeX. If
feH(X;F), then fore H(X x N;F). By Theorem 3.3 there exists a sequence
(h,)cH(X x N)®F which converges to for in (H(X x N;F),19). Hence the
sequence (/1,00) lies in H(X)® F, and converges to fonco = f in (H(X; F),t9). This
proves (a).

Conditions (b) and (c) follow from (a) by Corollary 2.3.

Before removing the hypothesis of pseudoconvexity in Corollary 3.5 we need some
preparation. Let (X,&) be a connected Riemann domain over a quasi-complete
locally convex space E, and consider the spectrum S(H (X), 7o), that is the set of all
nonzero continuous algebra homomorphisms 7 : (H(X),19) —C. By the Mackey—
Arens theorem there is a mapping

Ty : S(H(X),‘C())%E
such that ¢omy (T) = T(po&) for every TeS(H(X),19) and ¢peE'. Let
ex 1 xeX>eeS(H(X),10)

denote the evaluation mapping, that is &.(f ) = f(x) for every fe H(X). For each
feH(X) let f:S(H(X),1))»C be defined by AT)=T(f) for every
TeS(H(X),19). Then we have the following theorem, which is essentially due to
Alexander [1] and Schottenloher [25].

Theorem 3.6 (Alexander [1], Schottenloher [25]). Let (X, &) be a connected Riemann
domain over a quasi-complete locally convex space E. Then there is a Hausdorff
topology on S(H(X),t0) with the following properties:
(a) (S(H(X),10),nx) is a pseudoconvex Riemann domain over E.
(b) The mapping ex : X - S(H(X), 1) is a morphism.
(¢) If X denotes the connected component of S(H(X), o) which contains ex(X), then
fe H()f') for every fe H(X), and the extension mapping
fe(H(X),70)—fe(H(X),x)
is a topological isomorphism.
(d) If F is a quasi-complete locally convex space, then each fe H(X; F) admits an
extension fe H(X; F), and the extension mapping
fe(H(X; F),70)—fe(H(X; F), )

is a topological isomorphism.

Proof. This theorem is essentially due to Alexander [1] in the case of Banach spaces,
and to Schottenloher [25] in the case of locally convex spaces. Since (d) is not
mentioned in [25], and is only stated without proof in [23, Remark 4.4], we include a
proof here for the sake of completeness.
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If E is a k-space, then (d) follows easily from (c) with the aid of Theorem 2.2.
Indeed by (c) the extension mapping (H(X),19)— (H ()f'),to) is a topological
isomorphism. Then by using Theorem 2.2 we obtain the topological isomorphisms

(H(X;F), 1) = (H(X),10)eF = (H(X),1)eF = (H(X; F),1).

An examination of the mappings in Theorem 2.2 shows that the topological
isomorphism (H(X;F), 1) = (H(X; F), 1) thus obtained is precisely the extension
mapping H(X; F)— H(X;F).

If E is an arbitrary locally convex space, we proceed as follows. The proof of
Alexander [1, Section 4, Theorem 2] shows that it follows from (c) that every
feH(X;F) admits an extension f: X—F, which is weakly holomorphic, and
therefore Gateaux holomorphic. (This follows also from a result of Bogdanowicz [5,
Corollary 3], which became the starting point of most articles on vector-valued
holomorphic continuation.) To prove that f is continuous, we may assume, without
loss of generality, that F is a Banach space. If T€ X, then there is a compact set
K< X such that

(D) =1T(@)|<I$llx (4)
for every ¢p€ H(X). Since f is continuous, there is Ve ¥"(E) such that K + 2V c X
and || f]|g oy <o0. Let 37 o P"¢p(x)(1) = ¢p(x + 1) be the Taylor series expansion
of e H(X) at xe X, and set P/'¢(x) = P"¢(x)(¢) for every meN, xe X and teE.

Then P'¢p e H(X) and (P/"¢p)" = Pf”qb for every meN and t€ E. It follows from (4)
and the Cauchy inequalities that

[Pro(T) = [(PFd) " (T)I< 1P Pl <27"[|@llk2r (5)

for every meN, TeX and te V. By applying (5) to ¢ = yof, with yeF', ||y||<1,
it follows that

WP = PP (pN(T)] = [P (ef ) (DI<2 1S |l a1
and therefore
IPIATI<2™] Sk sar (6)

for every meN, Te X and te V. It follows from (6) that each P’”f'(T) is continuous,
and the series >~ P"f(T)(t) converges uniformly for re V. Hence it follows that f
is continuous.

Since the extension mapping (H(X),ty)— (H(X),1) is continuous, for each
compact set L< X, there are a compact set K = X and ¢>0 such that ||p||, <c||)||x
for every ¢ € H(X). By applying this inequality to yof , with y e F', ||y/]| <1, it follows
that ||f]|, <c||f|lx for every feH(X;F). Hence the extension mapping
(H(X;F),19)— (H(Y; F),79) is also continuous, and the proof of (d) is com-
plete. O

Corollary 3.5 and Theorem 3.6 immediately yield the following corollary.
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Corollary 3.7. Let E be a separable Frechet space with the bounded approximation
property, and let (X, &) be a connected Riemann domain over E. Then:

(a) H(X)®F is sequentially dense in (H(X;F),1o) for every Banach space F.

(b) HX)®F is dense in (H(X;F),t9) for every quasi-complete locally convex
space F.

(c) (H(X),10) has the approximation property.

As an application of our results we obtain the following theorem.

Theorem 3.8. Let E be a separable Fréchet space with the bounded approximation
property, let (X, &) be a connected Riemann domain over E, and let A be a complete
locally m-convex algebra with a unit element. Then:

(a) The spectrum S(H(X; A),t0) can be canonically identified with S(H(X), 1) X
S(A4).
(b) If X is pseudoconvex, then the spectrum S(H(X;A),to) can be canonically
identified with X x S(A).

Proof. (a) Given (T1,7>)eS(H(X),19) x S(A4), it is clear that the formula
Tf = Th(Tyof ) for every feH(X;A) (7)

defines a TeS(H(X; A),19). Conversely, we will show that every Te S(H(X; A), 7o)
is of the form (7). Indeed given T'e S(H(X;A4),1), it follows that each of the
functions

pe(H(X),19)>T(p®1)eC
and
yed->T(l®y)eC

is a continuous algebra homomorphism. Hence there are T,eS(H(X),1) and
T, € S(A) such that

T(¢®1) =Ti(¢) for every peH(X)
and
T(1®y) = To(y) for every yeA.
Since ¢®y = (¢®1)(1®), it follows that
T(p®y) = Ti($)T2(y) = Ti(T22(d ®Y))

for every ¢eH(X) and yeA. Hence (4) holds for every fe H(X)® A. Since
H(X)®A is dense in (H(X;A4),19), by Corollary 3.7, it follows that (7) holds for
every fe H(X; A).

(b) It suffices to apply (a), in tandem with a theorem of Schottenloher [25], which
asserts that the spectrum S(H(X), 1) can be canonically identified with X. O
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4. Riemann domains over (DFC)-spaces

In this section we prove that if (X,¢) is a connected, pseudoconvex Riemann
domain over a (DFC)-space with the approximation property, then (H(X), 7o) has
the approximation property. We will derive this result from Theorem 3.3 with the aid
of results of Lourenco [15,16]. Before stating Lourenco’s results in the most
convenient way we need some preparation.

If E is a locally convex space, and o€ cs(E), then (E, o) denotes the vector space E,
seminormed by o, and E, denotes the normed space (E,«)/a~'(0). Let n,e L(E, E,)
denote the canonical mapping.

We recall that E is said to be a (DFC)-space if E = D/, for a suitable Fréchet
space D. (DFC)-spaces were introduced and studied by Holstein [12,13] in
connection with the theory of topological tensor products. For the theory of
holomorphic functions on (DFC)-spaces we refer to Mujica [18], Valdivia [29],
Schottenloher [26], Nachbin [21], Lourenco [15,16] and Galindo et al. [9]. It follows
from the Banach—Dieudonné theorem that every (DFC)-space is a k-space (see [18]
or [29]). Then we have the following lemma, which is essentially due to Schottenloher
[26]. With the exception of (a), the results below are never stated explicitly, but they
are implicit in [26].

Lemma 4.1 (Schottenloher [26]). Let E be a (DFC)-space, and let (X,&) be a
connected, pseudoconvex Riemann domain over E. Then:

(a) X is hemicompact.

(b) There exists accs(E) such that d%(x)>0 for every xeX, there exists a
connected, pseudoconvex Riemann domain (X,,¢&,) over E,, and there exists a Ty-
morphism w, : X = X,.

(c) For each f e H(X; F), where F is a Banach space, we may choose the seminorm o
and the domain X, in (b) in such a way that f = f,on,, with f,e H(X,; F).

Proof. Condition (a) is [26, Lemma 7]. By using results of Mujica [18] and
Schottenloher [24], and a standard factorization method, we prove (b) and (c) at
the same time. Let (Kj,) be an increasing, fundamental sequence of compact
subsets of X, and let fe H(X;F), where F is a Banach space. For each n there
is o,€cs(E) such that K, + By (0,1)cX and f is bounded on K, + B7(0,1).
By Mujica [18, Corollary 7.9] there is aecs(E) such that a>r,a,, with r,>0,
for every n. In particular d%(x)>0 and f is bounded on B%(x;ry), where r, >0, for
every xeX. By Schottenloher [24, Lemma 1.7] dx(x,b) = oo for every xeX
and bheo~'(0). By Schottenloher [24, Proposition 1.8] there exists a connected,
pseudoconvex Riemann domain X /«~!'(0) over the quotient space E/«~'(0), and
there exists a m,-morphism 7% : X > X /o~!(0). The space X /o~!(0) is the quotient
of X under the equivalence relation ~ defined by y~x if yeAx(x,b, o) for
some bea~!(0). Let X, denote the set X/a~'(0), with the unique topology
which makes it a Riemann domain over the normed space E,. Thus we have the
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following commutative diagram:

x % x/l0) 4 ox,

¢l 1S, 1¢,

E ™ E'(0) 2 E,
Since f is bounded on B%(x,ry), with r,>0, for every xeX, it follows that f is
bounded on Ay(x,b, ) for every xe X and bea'(0). It follows from Liouville’s

theorem that f is constant on Ay(x,b, o) for every xe X and bea'(0). Thus
f =foom}, with f, e H(X,; F), as asserted. [

If (X, &) is a connected, pseudoconvex Riemann domain over a (DFC)-space E,
then .o/ (X) denotes the family of all «€ ¢s(E) which verify (b) in Lemma 4.1. Then we
have the following factorization theorem, which is essentially due to Lourengo [15,16].

Theorem 4.2 (Lourengo [15,16]). Let E be a (DFC)-space with the approximation
property, and let (X, &) be a connected, pseudoconvex Riemann domain over E. Then:

(a) E is the projective limit of a family (G;),.,; of normed spaces, each of which has an
equicontinuous Schauder basis. Furthermore, for each aecs(E), there are iel and
Cie L(G;; E,) such that Cieo; = m,, where ;€ L(E, G;) denotes the canonical mapping.

(b) For each oo/ (X), there exists a connected, pseudoconvex Riemann domain
(X;, &) over some G, there exists a oi-morphism of : X - X;, and there exists a C;-
morphism C; : X;— X, such that C}o0c} = }.

(c) For each fe H(X; F), where F is a Banach space, we may choose the domain
(X3, &) in (b) in such a way that f = fiea}, with fie H(X;; F).

Proof. Condition (a) is proved in [15, Theorem 2.1]. Condition (b) was proved in [16,
Theorem 1.1] when E has a continuous norm, and in that case the Riemann domain
(X;,0;) has some additional properties. An examination of the proof in [16] shows
that the hypothesis of the continuous norm was used only to establish those
additional properties. Condition (c) was not stated explicitly in [16], but follows at
once from (b) with the aid of Lemma 4.1(c). O

With the notation of Theorem 4.2 we have the following commutative diagram:

X LA X,
N A C
¢l Xi 1&
E il E,
o N~ &G 2 G
G;

Now we can prove our main result for Riemann domains over (DFC)-spaces.
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Theorem 4.3. Let E be a (DFC)-space with the approximation property, and let (X, &)
be a connected, pseudoconvex Riemann domain over E. Then:

(a) H(X)®F is (sequentially) dense in (H(X; F),to) for every Banach space F.

(b) HX)®F is dense in (H(X;F),t9) for every quasi-complete locally convex
space F.

(c) (H(X),10) has the approximation property.

Proof. (a) Let f'e H(X; F). With the notation of Theorem 4.2 we have that f* = fjco7,
where fie H(X;; F). By Theorem 3.3 there is a sequence (/,)<H(X;)®F which
converges to f; in (H(X;; F), 7). Hence the sequence (/,007) lies in H(X)® F and
converges to fico! = f in (H(X;F),1o). This shows (a).

Conditions (b) and (c) follow from (a) by Corollary 2.3.

Corollary 4.4. Let (X, &) be a connected Riemann domain over a (DFC)-space E. Then
the following conditions are equivalent:

(1) E has the approximation property.

(2) H(X)®F is (sequentially) dense in (H(X; F),to) for every Banach space F.

(3) HX)®F is dense in (H(X;F), 1) for every quasi-complete locally convex
space F.

(4) (H(X),t0) has the approximation property.

Proof. Implication (1) = (2) follows from Theorems 3.6 and 4.3. Implications
(2) = (3) and (3) = (4) follow from Corollary 2.3. Since E/ is a complemented
subspace of (H(X),10), it follows from (4) that E. has the approximation
property, and therefore E has the approximation property, by Corollary 1.3. Thus
4) = (1).

Schottenloher [23] remarked that (C(X), 1) has the approximation property for
every k-space X, and raised the question as to whether (H(U),19) has the
approximation property for every open subset U of a locally convex space E,
whenever E is a k-space with the approximation property. Corollaries 3.7 and 4.4
provide partial answers to that question.

As an application of our results we obtain the following theorem.

Theorem 4.5. Let E be a (DFC)-space with the approximation property, let (X, &) be a
connected Riemann domain over E, and let A be a complete locally m-convex algebra
with a unit element. Then:

(a) The spectrum S(H(X;A),t0) can be canonically identified with S(H(X),19) X
S(4).

(b) If X is pseudoconvex, then the spectrum S(H(X;A),t0) can be canonically
identified with X x S(A).

Proof. We can derive (a) from Corollary 4.4 in the same way we derived Theorem
3.8(a) from Corollary 3.7. And (b) follows from (a) with the aid of another result of
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Schottenloher [26, Proposition 4], which asserts that the spectrum S(H(X), 7o) can
be canonically identified with X. O
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