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Abstract

For an open subset U of a locally convex space E; let ðHðUÞ; t0Þ denote the vector space of
all holomorphic functions on U ; with the compact-open topology. If E is a separable Fréchet

space with the bounded approximation property, or if E is a (DFC)-space with the

approximation property, we show that ðHðUÞ; t0Þ has the approximation property for every

open subset U of E: These theorems extend classical results of Aron and Schottenloher. As

applications of these approximation theorems we characterize the spectra of certain

topological algebras of holomorphic mappings with values in a Banach algebra.
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0. Introduction

Let HðUÞ denote the vector space of all complex-valued holomorphic functions on
a nonvoid open subset U of a complex locally convex space E: Let t0 denote the
compact-open topology, and let to denote the Nachbin compact-ported topology on
HðUÞ: In 1976 Aron and Schottenloher [2] gave necessary and sufficient conditions
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for HðUÞ to have the approximation property when endowed with the topologies t0
or to: It follows from their results that if E is a Fréchet space or a (DFC)-space, and
if U is a finitely Runge open subset of E; then ðHðUÞ; t0Þ has the approximation
property if and only if E has the approximation property.
Every balanced open set, and every polynomially convex open set are finitely

Runge. But what can be said when U is an arbitrary open set? Very little could be
said in 1976, for that problem is closely connected with the Levi problem, envelopes
of holomorphy and holomorphic approximation, which were not sufficiently
understood at that time. But now we can say much more. In this paper we show
that if E is a separable Fréchet space with the bounded approximation property,
then ðHðUÞ; t0Þ has the approximation property for every open subset U of E: We
also show that if U is an open subset of a (DFC)-space E; then ðHðUÞ; t0Þ has the
approximation property if and only if E has the approximation property. As
applications of our results we characterize the spectra of certain topological algebras
of holomorphic mappings with values in Banach algebras or, more generally, with
values in complete locally m-convex algebras. For additional applications we refer
the reader to a recent article of Dineen [8].
This paper is devoted to the study of ðHðUÞ; t0Þ: A subsequent paper will be

devoted to the study of ðHðUÞ; toÞ:
Even if we are mainly interested in the study of open subsets of locally convex

spaces, we deal here more generally with Riemann domains over locally convex
spaces. The reason is that our proofs rely heavily on the machinery developed by
Mujica [19] and Louren@o [16] for pseudoconvex Riemann domains over Fréchet
spaces and (DFC)-spaces, respectively, and the fact, established by Alexander [1] and
Schottenloher [25], that the envelope of holomorphy of an open subset of a locally
convex space is a pseudoconvex Riemann domain over the same space.

1. The e-product and the approximation property

The letters E; F denote locally convex spaces, always assumed complex and
Hausdorff. LðE;FÞ denotes the vector space of all continuous linear mappings from
E into F : LcðE;FÞ denotes the vector space LðE;FÞ; endowed with the topology of
uniform convergence on all convex, balanced, compact subsets of E: When F ¼ C;
we write E 0 instead of LðE;CÞ; and E 0

c instead of LcðE;CÞ:
A main tool in this paper is the e-product of Laurent Schwartz. Following

Schwartz [27, Exposé no 8] (see also Schwartz [28, no. 1], Bierstedt [3, Definition 3.1]
or Köthe [14, p. 242]) we let

EeF ¼ LeðE0
c;FÞ

denote the vector space LðE0
c;FÞ; endowed with the topology of uniform

convergence on the equicontinuous subsets of E0: The space EeF is called the e-
product of E and F : Bierstedt’s definition of the e-product differs slightly from
Schwartz’ or Köthe’s definition, but both definitions coincide in the case of quasi-
complete locally convex spaces.

ARTICLE IN PRESS
S. Dineen, J. Mujica / Journal of Approximation Theory 126 (2004) 141–156142



When U and V vary among the closed, convex, balanced 0-neighborhoods in E

and F ; respectively, then the sets

WðU�;VÞ ¼ fTALðE 0
c;FÞ : TðU�ÞCVg

form a 0-neighborhood base in EeF :

Theorem 1.1 (Schwartz [27]). If E and F are locally convex spaces, then the mapping

T-T 0 is a topological isomorphism between the spaces EeF and FeE:

One can check that the mapping T-T 0 maps the set WðU�;VÞ onto the set
WðV�;UÞ:
Following Schwartz [27, Exposé no. 14] (see also Grothendieck [10, Chapitre I, no.

5]) we say that E has the approximation property if the identity mapping on E lies in
the closure of E0#E in LcðE;EÞ: Schwartz’ definition of the approximation property
(called the weak approximation property by Köthe [14, p. 232]) differs slightly from
Grothendieck’s definition, but both definitions coincide in the case of quasi-complete
locally convex spaces. The following theorem summarizes results of Grothendieck
[10, Chapitre I, no. 5] and Schwartz [27, Exposé no. 14] (see also Bierstedt [3, Satz
3.9] or Köthe [14, p. 243]).

Theorem 1.2 (Grothendieck [10], Schwartz [27]). For a locally convex space E the

following properties are equivalent:
(1) E has the approximation property.

(2) LcðE;EÞ ¼ E0#E:

(3) LcðE;FÞ ¼ E 0#F for every locally convex space F (equivalently for every

Banach space F ).

(4) LcðF ;EÞ ¼ F 0#E for every locally convex space F :

(5) FeE ¼ F#E for every locally convex space F (equivalently for every Banach

space F ).

(6) EeF ¼ E#F for every locally convex space F (equivalently for every Banach

space F ).

The equivalence of (1)–(4) (for every locally convex space F ) is easily seen.
Implication ð4Þ ) ð5Þ is immediate. Implication ð5Þ ) ð4Þ follows from the fact that
LcðF ;EÞ is a topological subspace of F 0

ceE: And equivalence ð5Þ3ð6Þ follows from
Theorem 1.1. The fact that each of conditions (3), (5) or (6) for every locally convex
space F is equivalent to the corresponding condition for every Banach space F ; was
pointed out by Bierstedt and Meise [4, p. 100]. In the case of condition (3) or (6), the
equivalence follows from the arguments of the proofs of two results from the book of
Köthe [14, p. 233, (2), (3)]. In the case of condition (5), the equivalence follows from
Theorem 1.1 and the corresponding equivalence in condition (6). We do not know
whether a similar remark applies to condition (4).
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Corollary 1.3. A locally convex space E has the approximation property if E0
c has the

approximation property.

Proof. If E 0
c has the approximation property, then it follows from Theorem 1.2(6)

that

E 0#F ¼ E0
ceF

for every locally convex space F : Since LcðE;FÞ is a topological subspace of E0
ceF ; it

follows that

E 0#F ¼ LcðE;FÞ

for every locally convex space F : Thus E has the approximation property, by
Theorem 1.2(3).

2. The e-product and spaces of holomorphic mappings

If U is a nonvoid open subset of a locally convex space E; then a mapping
f : U-F is said to be holomorphic if it is continuous, and the function l-c3f ða þ
lbÞ is holomorphic on some open neighborhood of zero in C for each aAU ; bAE and
cAF 0: HðU ;FÞ denotes the vector space of all holomorphic mappings from U into
F : When F ¼ C; we write HðUÞ instead of HðU ;CÞ:
Let ðX ; xÞ be a Riemann domain over E; that is X is a Hausdorff topological space

and x : X-E is a local homeomorphism. LetVðEÞ denote the collection of all open,
convex, balanced neighborhoods of zero in E: A section of X is a continuous
mapping s : A-X ; where ACE; such that x3s ¼ identity on A: For SCX and
VAVðEÞ; we write S þ VCX if for each xAS there is a section sx : xðxÞ þ V-X

such that sx3xðxÞ ¼ x: Then we define x þ t ¼ sxðxðxÞ þ tÞ for every xAS and tAV :
A mapping f : X-F is said to be holomorphic if for each xAX there is a section

s : xðxÞ þ V-X ; with VAVðEÞ and s3xðxÞ ¼ x; such that the mapping f 3s is
holomorphic on xðxÞ þ V : HðX ;FÞ denotes the vector space of all holomorphic
mappings from X into F : When F ¼ C; we write HðXÞ instead of HðX ;CÞ:
Let t0 denote the compact-open topology on HðX ;FÞ: We refer to the books
of Dineen [7] or Mujica [20] for background information on infinite dimensional
complex analysis.
We recall that a Hausdorff topological space X is said to be a k-space if a set

UCX is open in X whenever U-K is open in K for each compact set KCX : Every
metric space is a k-space. An open subset of a k-space is also a k-space. Hence it
follows that if X is a Riemann domain over a locally convex space E; and E is a k-
space, then X is also a k-space.
The following results are due to Schottenloher [23].

Lemma 2.1 (Schottenloher [23]). Let ðX ; xÞ be a Riemann domain over a locally

convex space E; and let F be a quasi-complete locally convex space.
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(a) For each fAHðX ;FÞ let Sf denote the continuous linear mapping

cAF 0
c-c3fAðHðX Þ; t0Þ:

Then the mapping

fAðHðX ;FÞ; t0Þ-Sf AFeðHðXÞ; t0Þ

is linear, continuous and injective.

(b) Let eX : xAX-exAðHðXÞ; t0Þ0 denote the evaluation mapping, that is exð f Þ ¼
f ðxÞ for every fAHðX Þ: If E is a k-space, then

eXAHðX ; ðHðXÞ; t0Þ0cÞ:

Theorem 2.2 (Schottenloher [23]). Let ðX ; xÞ be a Riemann domain over a locally

convex space E; and let F be a quasi-complete locally convex space. If E is a k-space,
then the mapping

fAðHðX ;FÞ; t0Þ-S0
f AðHðX Þ; t0ÞeF

is a topological isomorphism. Its inverse is the mapping

TAðHðX Þ; t0ÞeF-T3eXAðHðX ;FÞ; t0Þ:

From Theorems 1.2 and 2.2 we obtain the following corollary.

Corollary 2.3 (Schottenloher [23]). Let ðX ; xÞ be a Riemann domain over E; and

assume that E is a k-space. Then the space ðHðXÞ; t0Þ has the approximation property

if and only if

ðHðX ;FÞ; t0Þ ¼ HðXÞ#F

for every Banach space F ; or equivalently for every quasi-complete locally convex

space F :

Remark 2.4. A counterexample of Schottenloher [23, Example 1.4] shows that the
conclusions of Lemma 2.1 and Theorem 2.2 may fail to be true without the k-space
hypothesis.

3. Riemann domains over Fréchet spaces

Let ðX ; xÞ be a Riemann domain over a locally convex space E: If ðY ; ZÞ is another
Riemann domain over E; then a morphism from ðX ; xÞ into ðY ; ZÞ is a continuous
mapping t : X-Y such that Z3t ¼ x: If ðY ; ZÞ is a Riemann domain over F ;
and TALðE;FÞ; then a T-morphism is a continuous mapping t : X-Y such
that Z3t ¼ T3x:
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Let csðEÞ denote the family of all continuous seminorms on E: For aAcsðEÞ;
a; bAE and r40; set

Ba
Eða; rÞ ¼ fxAE : aðx � aÞorg;

DEða; b; rÞ ¼ fa þ lb : lAC; jljorg:

Consider the distance functions da
X : X-½0;N� and dX : X � E-ð0;NÞ; which are

defined as follows:

da
X ðxÞ ¼ supfr40: there is a section s : Ba

EðxðxÞ; rÞ-X

with s3xðxÞ ¼ xg,f0g;

dX ðx; bÞ ¼ supfr40: there is a section s : DX ðxðxÞ; b; rÞ-X

with s3xðxÞ ¼ xg:

If 0orpda
X ðxÞ; then Ba

X ðx; rÞ denotes the connected component of x�1ðBa
EðxðxÞ; rÞÞ

which contains x: Likewise, if 0orpdX ðx; bÞ; then DX ðx; b; rÞ denotes the connected
component of x�1ðDEðxðxÞ; b; rÞÞ which contains x:
If U is an open subset of E; then a function f : U-½�N;NÞ is said to be

plurisubharmonic if it is upper semicontinuous and the function l-f ða þ lbÞ is
subharmonic on some open neighborhood of zero in C for each aAU and bAE:
PsðUÞ denotes the set of all plurisubharmonic functions on U :
If ðX ; xÞ is a Riemann domain over E; then a function f : X-½�N;NÞ is said to

be plurisubharmonic if for each xAX there is a section s : xðxÞ þ V-X ; where
VAVðEÞ and s3xðxÞ ¼ x; such that f 3s is plurisubharmonic on xðxÞ þ V : PsðXÞ
denotes the set of all plurisubharmonic functions on X : The domain X is said to be
pseudoconvex if the function �log dX is plurisubharmonic on X � E:
If E has a Schauder basis ðenÞ; then En denotes the subspace generated by

e1;y; en; and Tn : E-En denotes the canonical projection. If ðX ; xÞ is a Riemann

domain over E; then we set Xn ¼ x�1ðEnÞ and xn ¼ xjEn: Then ðXn; xnÞ is a Riemann
domain over En:
The proof of Theorem 3.3 relies heavily on the next two lemmas, which summarize

results of Dineen [6, Example 2.4] and Mujica [19, Lemmas 2.5–2.7 and 3.1]. We
remark that the results in [19] sharpen results of Schottenloher [24], and are
ultimately based on the approach to the Levi problem initiated by Gruman and
Kiselman [11], and which became the model for all articles in that direction.

Lemma 3.1 (Mujica [19]). Let E be a metrizable locally convex space with an

equicontinuous Schauder basis and a continuous norm. Let ðX ; xÞ be a connected

pseudoconvex Riemann domain over E: Then there are three increasing sequences ðAnÞ;
ðBnÞ and ðCnÞ of open subsets of X ; and a sequence ðtnÞ of mappings with the following

properties:

(a) CnCBnCAn for every n; and
S

N

n¼1 Cn ¼ X :

(b) tn : An-Xn is a Tn-morphism, XnCAn and tn ¼ identity on Xn for every n:
(c) Bj-XnCCAj-Xn for every j and n:
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(d) tnðCjÞCBj-Xn whenever nXj:

(e) For each KCCX and VAVðEÞ such that K þ VCX ; there exists n0AN such

that KCCn and tnðxÞAx þ V whenever xAK and nXn0:
(f) For each fAHðXnÞ there exists a sequence ðgkÞCHðX Þ which converges to f 3tn

uniformly on Cn:

Lemma 3.2 (Dineen [6], Mujica [19]). Let E be a locally convex space with an

equicontinuous Schauder basis. Let ðX ; xÞ be a connected, pseudoconvex Riemann

domain over E; and let x0AX : Then there exists a directed, fundamental family of

continuous seminorms a on E with the following properties:
(a) da

X ðx0Þ40 and aðxÞ ¼ supn aðTnxÞ for every xAE:
(b) There exists a complemented subspace Ea of E which has an equicontinuous

Schauder basis and a continuous norm. More precisely E ¼ Ea"a�1ð0Þ:
(c) If we set Xa ¼ x�1ðEaÞ and xa ¼ xjXa; then ðXa; xaÞ is a connected, pseudoconvex

Riemann domain over Ea:
(d) If pa : E-Ea denotes the canonical projection, then there exists a pa-morphism

sa : X-Xa such that sa ¼ identity on Xa:
(e) If a function fAHðX Þ is bounded on an a-neighborhood of x0; then f 3sa ¼ f

on X :

Now we can prove our main result for Riemann domains over Fréchet spaces.

Theorem 3.3. Let E be a metrizable locally convex space with an equicontinuous

Schauder basis, and let ðX ; xÞ be a connected, pseudoconvex Riemann domain over E:
Then:
(a) HðX Þ#F is sequentially dense in ðHðX ;FÞ; t0Þ for every Banach space F :
(b) HðX Þ#F is dense in ðHðX ;FÞ; t0Þ for every quasi-complete locally convex

space F :
(c) ðHðXÞ; t0Þ has the approximation property.

Proof. (a) (i) First assume that E has a continuous norm, so that Lemma 3.1 applies.
Given fAHðX ;FÞ; we see that f 3tnAHðAn;FÞ for every n: We claim that ð f 3tnÞ
converges to f uniformly on the compact subsets of X : Indeed given KCCX and
e40; there exists VAVðEÞ such that K þ VCX and jj f ðyÞ � f ðxÞjjoe whenever
xAK and yAx þ V : By Lemma 3.1(e) there exists n041=e such that KCCn and
tnðxÞAx þ V whenever xAK and nXn0: Hence

jj f 3tnðxÞ � f ðxÞjjoe ð1Þ

whenever xAK and nXn0: Consider the restriction f jXnAHðXn;FÞ: Since En is finite
dimensional, a result of Grothendieck [9, Chapitre II, p. 81] guarantees that
ðHðXnÞ; t0Þ is a nuclear Fréchet space and

ðHðXn;FÞ; t0Þ ¼ HðXnÞ#F :
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Hence there exists hnAHðXnÞ#F such that

jjhnðyÞ � f ðyÞjjo1=n ð2Þ
for every yABn-Xn: Write

hnðyÞ ¼
Xpn

i¼1
hniðyÞbni;

with hniAHðXnÞ and bniAF for i ¼ 1;y; pn: By Lemma 3.1(f) for each i ¼ 1;y; pn

there exists gniAHðXÞ such that

jgniðxÞ � hni3tnðxÞjo1=npnjjbnijj
for every xACn: If we define gnAHðX Þ#F by

gnðxÞ ¼
Xpn

i¼1
gniðxÞbni;

then

jjgnðxÞ � hn3tnðxÞjjo1=n ð3Þ
for every xACn: If nXn0; then tnðKÞCtnðCnÞCBn-Xn: Hence for every xAK we
have that

jj f ðxÞ � gnðxÞjjp jj f ðxÞ � f 3tnðxÞjj þ jj f 3tnðxÞ � hn3tnðxÞjj

þ jjhn3tnðxÞ � gnðxÞjjo3e:

Thus ðgnÞ converges to f in ðHðX ;FÞ; t0Þ:
(ii) If E fails to have a continuous norm, then, given fAHðX ; f Þ; we fix x0AX ; and

choose aAcsðEÞ such that aðxÞ ¼ supnaðTnxÞ for every xAE; da
X ðx0Þ40; and f is

bounded on some a-neighborhood of x0: It follows from Lemma 3.2(e) that f 3sa ¼ f

on X : Since Ea has an equicontinuous Schauder basis and a continuous norm, there
exists a sequence ðhnÞCHðXaÞ#F which converges to f in ðHðXa;FÞ; t0Þ: Hence the
sequence ðhn3taÞ lies in HðX Þ#F ; and converges to f 3sa ¼ f in ðHðX ;FÞ; t0Þ: This
proves (a).
Conditions (b) and (c) follow from (a) by Corollary 2.3.

Remark 3.4. We used Corollary 2.3 to derive (b) from (a). It is not difficult to prove
directly that if HðXÞ#F is dense in ðHðX ;FÞ; t0Þ for every Banach space F ; then
HðX Þ#F is dense in ðHðX ;FÞ; t0Þ for every complete locally convex space F :
Indeed in this case F can be represented as a reduced projective limit of Banach
spaces, and the proof is straightforward.

Corollary 3.5. Let E be a separable Fréchet space with the bounded approximation

property, and let ðX ; xÞ be a connected, pseudoconvex Riemann domain over E: Then:
(a) HðX Þ#F is sequentially dense in ðHðX ;FÞ; t0Þ for every Banach space F :
(b) HðX Þ#F is dense in ðHðX ;FÞ; t0Þ for every quasi-complete locally convex

space F :
(c) ðHðXÞ; t0Þ has the approximation property.
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Proof. (a) By a result of Pelczynski (see the announcement in [22] or the detailed
proof in [17]), there exist a Fréchet space M with a Schauder basis, and a Fréchet
space N such that M ¼ E � N: Thus ðX � N; ðx; idNÞÞ is a Riemann domain over
E � N ¼ M: Let s : xAX-ðx; 0ÞAX � N; and let p : ðx; tÞAX � N-xAX : If
fAHðX ;FÞ; then f 3pAHðX � N;FÞ: By Theorem 3.3 there exists a sequence
ðhnÞCHðX � NÞ#F which converges to f 3p in ðHðX � N;FÞ; t0Þ: Hence the
sequence ðhn3sÞ lies in HðXÞ#F ; and converges to f 3p3s ¼ f in ðHðX ;FÞ; t0Þ: This
proves (a).
Conditions (b) and (c) follow from (a) by Corollary 2.3.
Before removing the hypothesis of pseudoconvexity in Corollary 3.5 we need some

preparation. Let ðX ; xÞ be a connected Riemann domain over a quasi-complete
locally convex space E; and consider the spectrum SðHðXÞ; t0Þ; that is the set of all
nonzero continuous algebra homomorphisms T : ðHðX Þ; t0Þ-C: By the Mackey–
Arens theorem there is a mapping

pX : SðHðXÞ; t0Þ-E

such that f3pX ðTÞ ¼ Tðf3xÞ for every TASðHðX Þ; t0Þ and fAE0: Let

eX : xAX-exASðHðX Þ; t0Þ

denote the evaluation mapping, that is exð f Þ ¼ f ðxÞ for every fAHðXÞ: For each
fAHðX Þ let f̂ : SðHðXÞ; t0Þ-C be defined by f̂ðTÞ ¼ Tð f Þ for every
TASðHðXÞ; t0Þ: Then we have the following theorem, which is essentially due to
Alexander [1] and Schottenloher [25].

Theorem 3.6 (Alexander [1], Schottenloher [25]). Let ðX ; xÞ be a connected Riemann

domain over a quasi-complete locally convex space E: Then there is a Hausdorff

topology on SðHðX Þ; t0Þ with the following properties:

(a) ðSðHðXÞ; t0Þ; pX Þ is a pseudoconvex Riemann domain over E:
(b) The mapping eX : X-SðHðXÞ; t0Þ is a morphism.

(c) If X̂ denotes the connected component of SðHðX Þ; t0Þ which contains eX ðXÞ; then

f̂AHðX̂Þ for every fAHðXÞ; and the extension mapping

fAðHðXÞ; t0Þ-f̂AðHðX̂Þ; t0Þ
is a topological isomorphism.

(d) If F is a quasi-complete locally convex space, then each fAHðX ;FÞ admits an

extension f̂AHðX̂;FÞ; and the extension mapping

fAðHðX ;FÞ; t0Þ-f̂AðHðX̂;FÞ; t0Þ
is a topological isomorphism.

Proof. This theorem is essentially due to Alexander [1] in the case of Banach spaces,
and to Schottenloher [25] in the case of locally convex spaces. Since (d) is not
mentioned in [25], and is only stated without proof in [23, Remark 4.4], we include a
proof here for the sake of completeness.
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If E is a k-space, then (d) follows easily from (c) with the aid of Theorem 2.2.

Indeed by (c) the extension mapping ðHðX Þ; t0Þ-ðHðX̂Þ; t0Þ is a topological
isomorphism. Then by using Theorem 2.2 we obtain the topological isomorphisms

ðHðX ;FÞ; t0Þ ¼ ðHðXÞ; t0ÞeF ¼ ðHðX̂Þ; t0ÞeF ¼ ðHðX̂;FÞ; t0Þ:

An examination of the mappings in Theorem 2.2 shows that the topological

isomorphism ðHðX ;FÞ; t0Þ ¼ ðHðX̂;FÞ; t0Þ thus obtained is precisely the extension

mapping HðX ;FÞ-HðX̂;FÞ:
If E is an arbitrary locally convex space, we proceed as follows. The proof of

Alexander [1, Section 4, Theorem 2] shows that it follows from (c) that every

fAHðX ;FÞ admits an extension f̂ : X̂-F ; which is weakly holomorphic, and
therefore Gateaux holomorphic. (This follows also from a result of Bogdanowicz [5,
Corollary 3], which became the starting point of most articles on vector-valued

holomorphic continuation.) To prove that f̂ is continuous, we may assume, without

loss of generality, that F is a Banach space. If TAX̂; then there is a compact set
KCX such that

j #fðTÞj ¼ jTðfÞjpjjfjjK ð4Þ

for every fAHðXÞ: Since f is continuous, there is VAVðEÞ such that K þ 2VCX

and jj f jjKþ2VoN: Let
P

N

m¼0 PmfðxÞðtÞ ¼ fðx þ tÞ be the Taylor series expansion
of fAHðXÞ at xAX ; and set Pm

t fðxÞ ¼ PmfðxÞðtÞ for every mAN; xAX and tAE:

Then Pm
t fAHðX Þ and ðPm

t fÞ
4 ¼ Pm

t
#f for every mAN and tAE: It follows from (4)

and the Cauchy inequalities that

jPm
t
#fðTÞj ¼ jðPm

t fÞ
4ðTÞjpjjPm

t fjjKp2�mjjfjjKþ2V ð5Þ

for every mAN; TAX̂ and tAV : By applying (5) to f ¼ c3f ; with cAF 0; jjcjjp1;
it follows that

jc3Pm
t f̂ðTÞj ¼ jPm

t ðc3f̂ÞðTÞj ¼ jPm
t ðc3f Þ4ðTÞjp2�mjjc3f jjKþ2V ;

and therefore

jjPm
t f̂ðTÞjjp2�mjj f jjKþ2V ð6Þ

for every mAN; TAX̂ and tAV : It follows from (6) that each Pmf̂ðTÞ is continuous,
and the series

P
N

m¼0 Pmf̂ðTÞðtÞ converges uniformly for tAV : Hence it follows that f̂

is continuous.

Since the extension mapping ðHðXÞ; t0Þ-ðHðX̂Þ; t0Þ is continuous, for each

compact set LCX̂; there are a compact set KCX and c40 such that jj #fjjLpcjjfjjK
for every fAHðXÞ: By applying this inequality to c3f ; with cAF 0; jjcjjp1; it follows

that jj f̂jjLpcjj f jjK for every fAHðX ;FÞ: Hence the extension mapping

ðHðX ;FÞ; t0Þ-ðHðX̂;FÞ; t0Þ is also continuous, and the proof of (d) is com-
plete. &

Corollary 3.5 and Theorem 3.6 immediately yield the following corollary.
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Corollary 3.7. Let E be a separable Fréchet space with the bounded approximation

property, and let ðX ; xÞ be a connected Riemann domain over E: Then:
(a) HðX Þ#F is sequentially dense in ðHðX ;FÞ; t0Þ for every Banach space F :
(b) HðX Þ#F is dense in ðHðX ;FÞ; t0Þ for every quasi-complete locally convex

space F :
(c) ðHðXÞ; t0Þ has the approximation property.

As an application of our results we obtain the following theorem.

Theorem 3.8. Let E be a separable Fréchet space with the bounded approximation

property, let ðX ; xÞ be a connected Riemann domain over E; and let A be a complete

locally m-convex algebra with a unit element. Then:
(a) The spectrum SðHðX ;AÞ; t0Þ can be canonically identified with SðHðXÞ; t0Þ �

SðAÞ:
(b) If X is pseudoconvex, then the spectrum SðHðX ;AÞ; t0Þ can be canonically

identified with X � SðAÞ:

Proof. (a) Given ðT1;T2ÞASðHðX Þ; t0Þ � SðAÞ; it is clear that the formula

Tf ¼ T1ðT23f Þ for every fAHðX ;AÞ ð7Þ

defines a TASðHðX ;AÞ; t0Þ: Conversely, we will show that every TASðHðX ;AÞ; t0Þ
is of the form (7). Indeed given TASðHðX ;AÞ; t0Þ; it follows that each of the
functions

fAðHðX Þ; t0Þ-Tðf#1ÞAC

and

yAA-Tð1#yÞAC

is a continuous algebra homomorphism. Hence there are T1ASðHðX Þ; t0Þ and
T2ASðAÞ such that

Tðf#1Þ ¼ T1ðfÞ for every fAHðXÞ

and

Tð1#yÞ ¼ T2ðyÞ for every yAA:

Since f#y ¼ ðf#1Þð1#yÞ; it follows that

Tðf#yÞ ¼ T1ðfÞT2ðyÞ ¼ T1ðT23ðf#yÞÞ

for every fAHðX Þ and yAA: Hence (4) holds for every fAHðXÞ#A: Since
HðX Þ#A is dense in ðHðX ;AÞ; t0Þ; by Corollary 3.7, it follows that (7) holds for
every fAHðX ;AÞ:
(b) It suffices to apply (a), in tandem with a theorem of Schottenloher [25], which

asserts that the spectrum SðHðX Þ; t0Þ can be canonically identified with X : &
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4. Riemann domains over (DFC)-spaces

In this section we prove that if ðX ; xÞ is a connected, pseudoconvex Riemann
domain over a (DFC)-space with the approximation property, then ðHðX Þ; t0Þ has
the approximation property. We will derive this result from Theorem 3.3 with the aid
of results of Louren@o [15,16]. Before stating Louren@o’s results in the most
convenient way we need some preparation.
If E is a locally convex space, and aAcsðEÞ; then ðE; aÞ denotes the vector space E;

seminormed by a; and Ea denotes the normed space ðE; aÞ=a�1ð0Þ: Let paALðE;EaÞ
denote the canonical mapping.
We recall that E is said to be a (DFC)-space if E ¼ D0

c; for a suitable Fréchet

space D: (DFC)-spaces were introduced and studied by Hölstein [12,13] in
connection with the theory of topological tensor products. For the theory of
holomorphic functions on (DFC)-spaces we refer to Mujica [18], Valdivia [29],
Schottenloher [26], Nachbin [21], Louren@o [15,16] and Galindo et al. [9]. It follows
from the Banach–Dieudonné theorem that every (DFC)-space is a k-space (see [18]
or [29]). Then we have the following lemma, which is essentially due to Schottenloher
[26]. With the exception of (a), the results below are never stated explicitly, but they
are implicit in [26].

Lemma 4.1 (Schottenloher [26]). Let E be a (DFC)-space, and let ðX ; xÞ be a

connected, pseudoconvex Riemann domain over E: Then:
(a) X is hemicompact.

(b) There exists aAcsðEÞ such that da
X ðxÞ40 for every xAX ; there exists a

connected, pseudoconvex Riemann domain ðXa; xaÞ over Ea; and there exists a pa-
morphism p�a : X-Xa:
(c) For each fAHðX ;FÞ; where F is a Banach space, we may choose the seminorm a

and the domain Xa in (b) in such a way that f ¼ fa3pa; with faAHðXa;FÞ:

Proof. Condition (a) is [26, Lemma 7]. By using results of Mujica [18] and
Schottenloher [24], and a standard factorization method, we prove (b) and (c) at
the same time. Let ðKnÞ be an increasing, fundamental sequence of compact
subsets of X ; and let fAHðX ;FÞ; where F is a Banach space. For each n there

is anAcsðEÞ such that Kn þ Ban

E ð0; 1ÞCX and f is bounded on Kn þ Ban

E ð0; 1Þ:
By Mujica [18, Corollary 7.9] there is aAcsðEÞ such that aXrnan; with rn40;
for every n: In particular da

X ðxÞ40 and f is bounded on Ba
X ðx; rxÞ; where rx40; for

every xAX : By Schottenloher [24, Lemma 1.7] dX ðx; bÞ ¼ N for every xAX

and bAa�1ð0Þ: By Schottenloher [24, Proposition 1.8] there exists a connected,

pseudoconvex Riemann domain X=a�1ð0Þ over the quotient space E=a�1ð0Þ; and
there exists a pa-morphism p�a : X-X=a�1ð0Þ: The space X=a�1ð0Þ is the quotient
of X under the equivalence relation B defined by yBx if yADX ðx; b;NÞ for

some bAa�1ð0Þ: Let Xa denote the set X=a�1ð0Þ; with the unique topology
which makes it a Riemann domain over the normed space Ea: Thus we have the
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following commutative diagram:

X !
p�a

X=a�1ð0Þ !id Xa

xk kxa kxa

E !pa E=a�1ð0Þ !id Ea

Since f is bounded on Ba
X ðx; rxÞ; with rx40; for every xAX ; it follows that f is

bounded on DX ðx; b;NÞ for every xAX and bAa�1ð0Þ: It follows from Liouville’s

theorem that f is constant on DX ðx; b;NÞ for every xAX and bAa�1ð0Þ: Thus
f ¼ fa3p�a; with faAHðXa;FÞ; as asserted. &

If ðX ; xÞ is a connected, pseudoconvex Riemann domain over a (DFC)-space E;
thenAðXÞ denotes the family of all aAcsðEÞ which verify (b) in Lemma 4.1. Then we
have the following factorization theorem, which is essentially due to Louren@o [15,16].

Theorem 4.2 (Louren@o [15,16]). Let E be a (DFC)-space with the approximation

property, and let ðX ; xÞ be a connected, pseudoconvex Riemann domain over E: Then:
(a) E is the projective limit of a family ðGiÞiAI of normed spaces, each of which has an

equicontinuous Schauder basis. Furthermore, for each aAcsðEÞ; there are iAI and

CiALðGi;EaÞ such that Ci3si ¼ pa; where siALðE;GiÞ denotes the canonical mapping.

(b) For each aAAðXÞ; there exists a connected, pseudoconvex Riemann domain

ðXi; xiÞ over some Gi; there exists a si-morphism s�i : X-Xi; and there exists a Ci-

morphism C�
i : Xi-Xa such that C�

i 3s
�
i ¼ p�a:

(c) For each fAHðX ;FÞ; where F is a Banach space, we may choose the domain

ðXi; xiÞ in (b) in such a way that f ¼ fi3s�i ; with fiAHðXi;FÞ:

Proof. Condition (a) is proved in [15, Theorem 2.1]. Condition (b) was proved in [16,
Theorem 1.1] when E has a continuous norm, and in that case the Riemann domain
ðXi; siÞ has some additional properties. An examination of the proof in [16] shows
that the hypothesis of the continuous norm was used only to establish those
additional properties. Condition (c) was not stated explicitly in [16], but follows at
once from (b) with the aid of Lemma 4.1(c). &

With the notation of Theorem 4.2 we have the following commutative diagram:

X !
p�a

Xa

s�i r s C�
i

xk Xi kxa
E !pa Ea

si r kxi s Ci

Gi

Now we can prove our main result for Riemann domains over (DFC)-spaces.
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Theorem 4.3. Let E be a (DFC)-space with the approximation property, and let ðX ; xÞ
be a connected, pseudoconvex Riemann domain over E: Then:
(a) HðX Þ#F is (sequentially) dense in ðHðX ;FÞ; t0Þ for every Banach space F :
(b) HðX Þ#F is dense in ðHðX ;FÞ; t0Þ for every quasi-complete locally convex

space F :
(c) ðHðXÞ; t0Þ has the approximation property.

Proof. (a) Let fAHðX ;FÞ:With the notation of Theorem 4.2 we have that f ¼ fi3s�i ;
where fiAHðXi;FÞ: By Theorem 3.3 there is a sequence ðhnÞCHðXiÞ#F which
converges to fi in ðHðXi;FÞ; t0Þ: Hence the sequence ðhn3s�i Þ lies in HðX Þ#F and

converges to fi3s�i ¼ f in ðHðX ;FÞ; t0Þ: This shows (a).
Conditions (b) and (c) follow from (a) by Corollary 2.3.

Corollary 4.4. Let ðX ; xÞ be a connected Riemann domain over a (DFC)-space E: Then

the following conditions are equivalent:
(1) E has the approximation property.

(2) HðX Þ#F is (sequentially) dense in ðHðX ;FÞ; t0Þ for every Banach space F :
(3) HðX Þ#F is dense in ðHðX ;FÞ; t0Þ for every quasi-complete locally convex

space F :
(4) ðHðXÞ; t0Þ has the approximation property.

Proof. Implication ð1Þ ) ð2Þ follows from Theorems 3.6 and 4.3. Implications
ð2Þ ) ð3Þ and ð3Þ ) ð4Þ follow from Corollary 2.3. Since E0

c is a complemented

subspace of ðHðXÞ; t0Þ; it follows from (4) that E 0
c has the approximation

property, and therefore E has the approximation property, by Corollary 1.3. Thus
ð4Þ ) ð1Þ:
Schottenloher [23] remarked that ðCðXÞ; t0Þ has the approximation property for

every k-space X ; and raised the question as to whether ðHðUÞ; t0Þ has the
approximation property for every open subset U of a locally convex space E;
whenever E is a k-space with the approximation property. Corollaries 3.7 and 4.4
provide partial answers to that question.
As an application of our results we obtain the following theorem.

Theorem 4.5. Let E be a (DFC)-space with the approximation property, let ðX ; xÞ be a

connected Riemann domain over E; and let A be a complete locally m-convex algebra

with a unit element. Then:

(a) The spectrum SðHðX ;AÞ; t0Þ can be canonically identified with SðHðXÞ; t0Þ �
SðAÞ:

(b) If X is pseudoconvex, then the spectrum SðHðX ;AÞ; t0Þ can be canonically

identified with X � SðAÞ:

Proof. We can derive (a) from Corollary 4.4 in the same way we derived Theorem
3.8(a) from Corollary 3.7. And (b) follows from (a) with the aid of another result of
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Schottenloher [26, Proposition 4], which asserts that the spectrum SðHðXÞ; t0Þ can
be canonically identified with X : &
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